Role of Advanced Generation Technologies to Reduce Power Outages

POWER OUTAGES
Harbinger of Things
to Come?

February 12-13, 2001

Abbie W. Layne
National Energy Technology Laboratory

Power Generation Markets of the Future

Dispersed and Distributed Resources

1 kW to 100,000 kW Systems Strategically Placed Can Enhance Grid Reliability and Improve Energy Efficiency to End Users

The Past: DOE's Power Outage Study

- Recommended Actions
 - Support the development of interconnection standards for distributed energy resources
 - Integrate customer demand management, distributed generation, and storage technologies
 - Study the potential for using emergency backup generators to reduce system demands to help avoid power outages

The Past: DOE Powering the New Economy

- Federal electricity restructuring
- Investments in the technologies that will enable the inter-grid to operate at higher levels of reliability
- Ensure availability of clean, distributed power technologies and eliminate institutional, business, and technological barrier to their use
- Policies and investments that acknowledge and reflect the increasing interdependence of our electricity and natural gas infrastructure
- Ensure we have adequate supplies of oil and natural gas to meet our near- to mid term power and fuel needs
- Use energy more efficiently and to provide cleaner alternative sources of power and fuel

Today: National Energy Strategy

- President's task force on energy
- Address:
 - how best to cope with high energy prices and reliance of foreign oil
 - how best to encourage the development of pipelines and power generating capacity in the country
 - deal with both short term issues(California) and long term national issues

Electricity Generation by Fuel DOE/EIA Projects Dramatic Increase in Gas Use

Source: EIA, AEO 2001

Future Solutions?

- Adequate Supplies -- Power and Fuels
 - –Examples:
 - Advanced Turbine Power Plants
 - Fuel Cells
 - Improved Coal Steam Plants
 - Gas Hydrates
- Effective Regulations and Policies
- Transmission and Infrastructure

Advanced Generation Has Many Public Policy Benefits

Electric Reliability

Lower Costs

Environmental Performance

Mission

U.S. Competitiveness

DOE Power Program Addressing Issues

- Office of Energy Efficiency and Renewable Energy
 - Distributed Energy Resources
 - Electric Infrastructure Reliability
- Office of Fossil Energy
 - Coal
 - Power Plant Improvement Initiative
 - Vision 21(also includes gas/coal focused)
 - Strategic Center for Natural Gas
 - Next Generation Turbine Program
 - Fuel Cells/SECA
 - Natural Gas Infrastructure
 - Supply and Storage

ATS Program Objectives

By 2000, develop advanced turbines that are:

• Ultra-high efficiency: >60% for utility-scale systems

15% improvement for industrial- scale systems

Super-clean: NOx <10 ppm

Cost of electricity: 10% less

Fuel-flexible: gas is primary focus

Leapfrog in Turbine Performance

Advanced Turbine Systems System

Development and Testing

- ATS utility scale products are the cleanest, most efficient gas turbine power plants in the world
- Scheduled for demonstration near Scriba, New York and Orlando Florida during the year 2002
- Over 95 universities, DOE national labs and US industries partnered to develop ATS

Small Combustion Turbines

1992

- 28% efficiency
- Double-digit ppm NO_X

- Lower cost operations
- Improved RAMD

- 40% efficiency (simple cycle)
- Single-digit ppm NO_X
- 3.5 cents/kWh (8,000 hrs/yr)

Microturbines

2000

- 21-33% efficiency
- 25-300 kW
- Commercially available
- Few moving parts

- Advanced materials
- Improved recuperators
- Low emission combustors

- 50% efficiency
- Single-digit ppm NO_X
- 25 kW 1 MW

Phosphoric Acid Fuel Cells

1993

• "Commercially ready"

DoD cost-shared in 3/4 of units

- 204 units
- 40% efficiency
- \$4,500/kW
- 200 kW
- Plug and play

PEM Fuel Cells for Buildings

2000

- Field tests
- Intense market interest

- Commercial
- Residential

- Commercial availability
- Cost reductions
- 40% efficiency
- \$1,500/kW
- 1 75 kW

Molten Carbonate Fuel Cells

2000

- Demonstration
- 47% efficiency
- \$8,000/kW
- 250 kW
- Internal reforming

- Near-term DG market
- 50-60% efficiency
- \$1,000-1,500/kW
- 250 kW 3 MW

Solid Oxide Fuel Cells

2000

- 47% efficiency
- > \$10,000/kW
- 100 220 kW
- Internal/coupled reforming

- **Near-term DG market**
- 47-63% efficiency
- \$1,000-1,500/kW
- 250 kW 1 MW

Fuel Cell/Turbine Hybrids

2000

- > \$10,000/kW
- 57-59% efficiency
- 220 kW

- DG market
- \$1,000-1,200/kW
- 70% efficiency
- 1 20 MW

SECA Development: Progressive Applications

2003-2005

- **Prototype testing**
- \$800/kW
- **Auxiliary power**
- Residential

- \$400/kW stationary units
- \$200/kW vehicles/reformer

- 75% efficient plants
- \$50/kW propulsion

Natural Gas Engines

2000

- < 40% efficiency
- > 50 ppm NO_X
- \$200-800/kW
- < 5 MW

- 50% efficiency
- 5 ppm NO_X

Working to Overcome Barriers

- Cost
- Awareness
- IEEE 1547 Interconnection Standard
- Net metering
- Streamlined siting and permitting process
- Output-based emission standards

Gas Infrastructure Reliability

Infrastructure includes:

- -Transmission systems
- Distribution systems
- Gas storage

Program goals

- Enhance safety and reli
- Increase gas deliverabil
- Reduce environmental impact

Natural Gas Exploration and Production

- Near-term: recover more from known fields
- Mid-term: unlock low perm resources containing natural fractures
- Long-term: encourage exploration for deep gas and hydrates

Developing Technologies to Ensure an Abundant, Economical Supply of Natural Gas With Minimal Environmental Impact

